Beräkning av derivata när det finns två kända funktioner
Har fastnat på följande uppgift:
f(x)= x^3 + 2x + 4
g(x)= x^3 + 2x + 4
h(x)=f(g(x))
Jag tänker mig att lösningen är att ersätta x i f(x) med g(x) dvs. x^3+2x + 4
Detta ger h(x)=(x^3+2x + 4)^2 + 2(x^3+2x + 4) +4 vilket i sig inte är svårt att beräkna.
Derivatan av h(x) kommer dock att innehålla massor av x-termer i olika grad och en konstant men jag har fått för mig att svaret på frågan ska vara ett heltal.
Tänker jag rätt eller är jag helt ute och cyklar?
Tacksam för svar och vägledning.
Sammansatta funktioner deriveras med kedjeregeln.
Är detta bekant?
Christian67 skrev:Har fastnat på följande uppgift:
f(x)= x^3 + 2x + 4
g(x)= x^3 + 2x + 4
h(x)=f(g(x))Jag tänker mig att lösningen är att ersätta x i f(x) med g(x) dvs. x^3+2x + 4
Detta ger h(x)=(x^3+2x + 4)^2 + 2(x^3+2x + 4) +4 vilket i sig inte är svårt att beräkna.
Derivatan av h(x) kommer dock att innehålla massor av x-termer i olika grad och en konstant men jag har fått för mig att svaret på frågan ska vara ett heltal.
Tänker jag rätt eller är jag helt ute och cyklar?
Tacksam för svar och vägledning.
Jag skulle nog använda kedjeregeln för att beräkna h'(x). Det ser inte ut som att h'(x) kan vara en konstant funktion.
Välkommen till Pluggakuten!
Kedjeregeln:
.
Bekant?
Christian67 skrev:Detta ger h(x)=(x^3+2x + 4)^2 + 2(x^3+2x + 4) +4
Nej. Det var ju x^3 inte x^2 så det blir h(x)=(x^3+2x + 4)^3 + 2(x^3+2x + 4) +4
Vilket bara är jobbigt att räkna ut. Använd kedjeregeln.
dr_lund skrev:Kedjeregeln:
.
Bekant?
Jag får "läsa in mig på ämnet" - tack.
joculator skrev:Christian67 skrev:Detta ger h(x)=(x^3+2x + 4)^2 + 2(x^3+2x + 4) +4
Nej. Det var ju x^3 inte x^2 så det blir h(x)=(x^3+2x + 4)^3 + 2(x^3+2x + 4) +4
Vilket bara är jobbigt att räkna ut. Använd kedjeregeln.
Visst var det så - fel av mig. Frågan kvarstår dock - går det i detta fall att få fram derivatan av h(x) som ett heltal eller ska det vara typ"2x+8" ?
Jovisst men då krävs att du har möjlighet att bestämma funktionsvärdet , för något .
Christian67 skrev:
Visst var det så - fel av mig. Frågan kvarstår dock - går det i detta fall att få fram derivatan av h(x) som ett heltal eller ska det vara typ"2x+8" ?
Menar du derivatans värde i en viss punkt eller själva derivatafunktionen h'(x)?
Derivatafunktionen h'(x) kommer att vara ett polynom i x, så dess värde kommer inte att vara konstant. Istället kommer värdet att bero av värdet på x.
Jämför: Om p(x) = x^3 så är p'(x) = 3x^2. Värdet av p'(x) är inte konstant utan beror på vilket värde på x du väljer.
Kan du ladda upp en bild av uppgiften?
Yngve skrev:Christian67 skrev:Visst var det så - fel av mig. Frågan kvarstår dock - går det i detta fall att få fram derivatan av h(x) som ett heltal eller ska det vara typ"2x+8" ?Menar du derivatan i en viss punkt eller derivatafunktionen h'(x)?
Kan du ladda upp en bild av uppgiften?
Det står bara låt f(x)=x^2+2x+4 och g(x)=x^3+2x+4. Låt sedan h(x)=f(g(x)) och bestäm h'(x)
Christian67 skrev:Yngve skrev:Christian67 skrev:Visst var det så - fel av mig. Frågan kvarstår dock - går det i detta fall att få fram derivatan av h(x) som ett heltal eller ska det vara typ"2x+8" ?Menar du derivatan i en viss punkt eller derivatafunktionen h'(x)?
Kan du ladda upp en bild av uppgiften?
Det står bara låt f(x)=x^2+2x+4 och g(x)=x^3+2x+4. Låt sedan h(x)=f(g(x)) och bestäm h'(x)
nu har det blivit f(x)=x^2 ... vilket skall det vara?
Ok Ingen bestämning av ngt funktionsvärde. Nej, då blir derivatan en x-beroende funktion.
joculator skrev:Christian67 skrev:Yngve skrev:Christian67 skrev:Visst var det så - fel av mig. Frågan kvarstår dock - går det i detta fall att få fram derivatan av h(x) som ett heltal eller ska det vara typ"2x+8" ?Menar du derivatan i en viss punkt eller derivatafunktionen h'(x)?
Kan du ladda upp en bild av uppgiften?
Det står bara låt f(x)=x^2+2x+4 och g(x)=x^3+2x+4. Låt sedan h(x)=f(g(x)) och bestäm h'(x)
nu har det blivit f(x)=x^2 ... vilket skall det vara?
f(x)=x i kvadrat ..... ska det vara
f(x)=x i kvadrat ..... ska det vara
Skall g(x) fortfarande börja med x3...?
Christian67 skrev:
Det står bara låt f(x)=x^2+2x+4 och g(x)=x^3+2x+4. Låt sedan h(x)=f(g(x)) och bestäm h'(x)
OK svaret på din fråga är då att h'(x) inte är ett heltal (inte heller en konstant).
Vill du även ha hjälp med hur du bestämmer h'(x)?
Yngve skrev:Christian67 skrev:Det står bara låt f(x)=x^2+2x+4 och g(x)=x^3+2x+4. Låt sedan h(x)=f(g(x)) och bestäm h'(x)
OK svaret på din fråga är då att h'(x) inte är ett heltal (inte heller en konstant).
Vill du även ha hjälp med hur du bestämmer h'(x)?
Ja - precis. Man ska tydligen använda kedjeregeln men jag får det inte riktigt att klaffa (trögtänkt troligtvis) .-)
Ett shysst exempel kanske man kan lära sig av.
Christian67 skrev:
Ja - precis. Man ska tydligen använda kedjeregeln men jag får det inte riktigt att klaffa (trögtänkt troligtvis) .-)Ett shysst exempel kanske man kan lära sig av.
- f(x) = x^2
- g(x) = 3x+4
- h(x) = f(g(x)) = (g(x))^2 är en sammansatt funktion.
Kedjeregeln ger oss då att h'(x) = f'(g(x))*g'(x)
Vi har att
- f'(g(x)) = 2*g(x)
- g'(x) = 3
Det ger oss att h'(x) = 2*g(x)*3 = 6*g(x) = 6*(3x+4)
Ett shysst exempel kanske man kan lära sig av.
Nej, men vi kan hjälpa dig att räkna ut det själv.
Vad är f(x)? Vad är f'(x)? Vad är g(x)? Vad är g'(x)?
Börja med detta, så kan vi fortsätta sedan.
Smaragdalena skrev:Ett shysst exempel kanske man kan lära sig av.
Nej, men vi kan hjälpa dig att räkna ut det själv.
Vad är f(x)? Vad är f'(x)? Vad är g(x)? Vad är g'(x)?
Börja med detta, så kan vi fortsätta sedan.
f(x) =x^2 +2x + 4 ==> f'(x)=2x + 2
g(x)=x^3 + 2x + 4 == g'(x)=3x^2 +2
Vad är då derivatan av f(g(x))? Du vet att det är f'(g(x))*g'(x). Jämför med det Yngve skrev - han är visst snällare än jag.
Visa spoiler
Du skall alltså sätta in g(x)=x3+2x+4 där det står x i f'(x) och multiplicera detta med g'(x).
Smaragdalena skrev:Vad är då derivatan av f(g(x))? Du vet att det är f'(g(x))*g'(x). Jämför med det Yngve skrev - han är visst snällare än jag.
Visa spoiler
Du skall alltså sätta in g(x)=x3+2x+4 där det står x i f'(x) och multiplicera detta med g'(x).
Du menar alltså f'(g(x)) * g'(x) = (2(x^3 +2x + 4) +2) * (3x^2 +2) = ((2x^3 + 6x +8) +2) * (3x^2 +2) = (2x^3 + 6x + 10)(3x^2 +2)
= 6x^5 + 22x^3 + 30x^2 + 12x +20
men vad blir h'(x)?
Det är ju det du har räknat ut!
h(x)=f(g(x)) så h'(x)=f'(g(x))*g'(x)
Smaragdalena skrev:Det är ju det du har räknat ut!
h(x)=f(g(x)) så h'(x)=f'(g(x))*g'(x)
Ta mig tusan - det stämmer !!! :-) Du är en pärla, TACK som f-n :-)