Beräkna med hjälp av en grafräknare eller dator ett närmevärde till en funktion
Beräkna med hjälp av en grafräknare eller dator ett närmevärde med tre värdesiffror till g(4).
Vet någon hur man använder en grafräknare för att beräkna ett närmevärde med tre värdesiffror till g(4)?
Om du har en från Texas instruments så finns funktionen fnint (eller något liknande).
Du kan även integrera numeriskt i graffönstret.
Dr. G skrev:Om du har en från Texas instruments så finns funktionen fnint (eller något liknande).
Du kan även integrera numeriskt i graffönstret.
Jag hittade till ”fnInt(”, men jag vet sedan inte hur jag ska använda den. Har aldrig beräknat något med hjälp av integral när jag använder grafräknaren.
Vilken räknare har du? Det brukar gå att googla fram en bruksanvisning.
Smaragdalena skrev:Vilken räknare har du? Det brukar gå att googla fram en bruksanvisning.
TI-82 Stats.
Jag tror inte jag kommer kunna titta igenom hela bruksanvisningen... det är likadan process för alla Texas räknare.
Smaragdalena skrev:
Så om jag har en uppgift som säger såhär:
Beräkna med trapetsmetoden och fyra lika stora delintervall. Svara med tre värdesiffror:
a)
Skulle rätta sättet att lösa den på genom att skriva:
?
Svaret jag fick i min räknare var 0.8413096275.
Såhär ska lösningen dock bli.
På sidan du skickade stod det något om det här också:
Vad menar man med steglängd?
Om du integrerar från 0 till 1 med steglängden 0,25 kommer den att dela upp intervallet i 4 delar, om steglängden är 0,1 kommer den att dela upp intervallet i 10 delar. Standardvärdet är tydligen 0,00001 så då blir det 100 000 delar. Det ger ett mycket bättre närmevärde än om man räknar med 4 eller 10 delar.