7 svar
81 visningar
Snushunk behöver inte mer hjälp
Snushunk 152
Postad: 28 feb 2022 10:40 Redigerad: 28 feb 2022 10:50

Ballong fylls med luft, derivata

Hej, jag har fastnat på den här uppgiften!

En sfärisk ballong fylls med luft, volymen ökar med 20 cm^3/s när radien är 30 cm. Hur snabbt ökar radien i den punkten? Jag vet:


V(r) =4πr33och 

V'(r) =4πr2

Men enligt info  i uppgiften stämmer inte överens med formeln för derivatan. Dvs Volymen ökar inte med 20 cm^2 när radien är 30 cm om jag sätter in V'(30). 

Taktiken jag försökte med var att bryta ut r från V(r) så att jag har r uttryckt i V och sedan derivera detta så får jag förändringen av radien med hänsyn till volymen. Det blev fel. 

Jag fick: r =(3V4π)1/3

som jag inte lyckas derivera. Men är jag på rätt väg? 

Laguna Online 30711
Postad: 28 feb 2022 10:49

Vad betyder "ökar med 20 cm2"? Till att börja med har volym enheten cm3, men ska det vara per sekund, möjligen?

Snushunk 152
Postad: 28 feb 2022 10:50
Laguna skrev:

Vad betyder "ökar med 20 cm2"? Till att börja med har volym enheten cm3, men ska det vara per sekund, möjligen?

ja precis, det är ändrat nu

Laguna Online 30711
Postad: 28 feb 2022 10:59

Det som V'(r) säger är hur fort volymen ökar beroende på r. Men du har fått volymökningen beroende på tid i stället. Det du behöver är ett uttryck för derivatan av volymen med avseende på tiden.

Snushunk 152
Postad: 28 feb 2022 11:07 Redigerad: 28 feb 2022 11:08

Jag vet inte om jag förstår. Volymen som ökar med 20cm^3/s när radien är 30cm ger mig väl volymökningen beroende på radien?

Kedjeregeln borde fungera då på så sätt: dVdt=dVdrdrdt, där dVdr=20cm3/s

Men jag har ju inte fått nån information alls om tiden? Har ju bara funktioner som beskriver hur volymen beror på radien.

Så då kan jag väl inte lösa ut dr/dt?

Laguna Online 30711
Postad: 28 feb 2022 11:10

Du har dV/dt och dV/dr så då kan du räkna ut dr/dt.

Snushunk 152
Postad: 28 feb 2022 11:10 Redigerad: 28 feb 2022 11:10

Oops, ja det är ju hur volymen beror på tiden förresten. 20cm^3 per sekund just där radien är 30 cm. 

Snushunk 152
Postad: 28 feb 2022 11:12

aa nu lyckades jag lösa den, 1/180pi blev det, stämmer! Thank you :)

Svara
Close