28 svar
454 visningar
JnGn 280 – Fd. Medlem
Postad: 19 sep 2017 10:44

Argument, absolutbelopp

Hej

kan någon hjälpa mig med följande uppgift:

Lös ekvationen 6z2+5+18iz+-1-3i=0 Ange även argument och absolutbelopp till lösningarna, i decimalform med två decimaler, samt rita in rötterna i det komplexa talplanet.

Jag har kommit fram till z=-1-3i och z=1/6

Nästa steg blir att beräkna absolutbelopp och argument.

Som jag förstår så blir absolutbeloppet -12+-32=10 och 162=136=16

Sedan blir argumentet arctan-3-1=1,25 så arg=1.25 samt arg=0

Smaragdalena 80504 – Avstängd
Postad: 19 sep 2017 10:57

För vilken vinkel v är tan v = 1,25?

Ture 10335 – Livehjälpare
Postad: 19 sep 2017 10:59

Vilken kvadrant ligger den första lösningen i?

(både real och im < 0)

JnGn 280 – Fd. Medlem
Postad: 19 sep 2017 11:05

då båda real och imaginärdel är mindre än noll ligger den första lösningen i den tredje kvadranten, den i vänstra nedersta hörnet.

tomast80 4245
Postad: 19 sep 2017 11:08
JnGn skrev :

då båda real och imaginärdel är mindre än noll ligger den första lösningen i den tredje kvadranten, den i vänstra nedersta hörnet.

Stämmer bra! Vilken värdemängd har arctanx \arctan x ?

JnGn 280 – Fd. Medlem
Postad: 19 sep 2017 11:08
Smaragdalena skrev :

För vilken vinkel v är tan v = 1,25?

tanv=1.25 för vinkeln arctan(-3/-1)

tomast80 4245
Postad: 19 sep 2017 11:10
JnGn skrev :
Smaragdalena skrev :

För vilken vinkel v är tan v = 1,25?

tanv=1.25 för vinkeln arctan(-3/-1)

Vilken kvadrant ligger v=1,25 v = 1,25 i? Vilken period har tanv \tan v ?

Ture 10335 – Livehjälpare
Postad: 19 sep 2017 11:15

Varför inte rita en bild?

markera din lösning och vinkeln 1,25 radianer i det komplexa talplanet.

Sammanfaller dom?

JnGn 280 – Fd. Medlem
Postad: 19 sep 2017 11:29
tomast80 skrev :
JnGn skrev :

då båda real och imaginärdel är mindre än noll ligger den första lösningen i den tredje kvadranten, den i vänstra nedersta hörnet.

Stämmer bra! Vilken värdemängd har arctanx \arctan x ?

arctans värdemängd är väl -π2,π2

JnGn 280 – Fd. Medlem
Postad: 19 sep 2017 11:33
Ture skrev :

Varför inte rita en bild?

markera din lösning och vinkeln 1,25 radianer i det komplexa talplanet.

Sammanfaller dom?

vinkeln 125 radianer blir vinkeln 5pi/4 som är 225grader.

Den är också i den tredje kvadranten längst ner till vänster.

Så dom korsar varandra.

Ture 10335 – Livehjälpare
Postad: 19 sep 2017 11:41

Nej det är det inte. Pi radianer dvs 3,14 är 180 grader så 1,25 är mindre än 180. Närmare 70 grader. 

1,25*180/3,14= ...

Smaragdalena 80504 – Avstängd
Postad: 19 sep 2017 11:43
JnGn skrev :

arctans värdemängd är väl -π2,π2

Vinkeln 125 radianer (eller 1,25 radianer) är något helt annat än det du beskriver. Det du beskriver är "den vinkel vars tangens-värde är 1,25" d v s arc tan 1,25 + pi n. Eftersom du vet att din punkt skall ligga i tredje kvadranten, behöver du lägga till 1 pi till vinkeln.

JnGn 280 – Fd. Medlem
Postad: 19 sep 2017 14:06

okej så om man då tar 1,25*180/3,14= 71,7

då kommer den i den första kvadranten då den är mindre än 90 grader. Alltså kommer den inte korsa -1-3i som är i den tredje kvadranten

Smaragdalena 80504 – Avstängd
Postad: 19 sep 2017 14:56

Vad är det du försöker räkna ut?

Du skall ta fram den vinkel vars vinkelben (från origo) har lutningen k = 1,25. Denna linje passerar genom både första och tredje kvadranten, men när man använder arc tan-funktionen får man alltid en vinkel som ligger i första kvadranten (eller i andra, om man har en negativ lutning). Vilken vinkel lär det mellan x-axeln och den del av linjen som finns i tredje kvadranten?

JnGn 280 – Fd. Medlem
Postad: 19 sep 2017 15:16

jag är lite vilsen nu, jag kom fram till z=-1-3i och z=1/6

absolutbeloppet 10och 1/6

argumentet arctan(-3/-1) och arg=0

där jag fastnat är på argumentet för (-3/-1) som jag fick till 1,25.

Sedan räknade vi ut 1,25*180/2,14=71.

71 grader är mindre än 90 och alltså i första kvadranten samt tredje. Eftersom den är i den tredje korsar den väl även -1-3i?

Efter det är jag inte med på hur man tar sig vidare.

Smaragdalena 80504 – Avstängd
Postad: 19 sep 2017 15:26

Gör uträkningen arc tan 1,25. Då får du fram en vinkel i första kvadranten. Du är ute efter den vinkel som man får om man drar ut den vinkeln på andra sidan origo. Förlänger du den linjen lagom långt kommer den att nå fram till punkten z=-1-3i .

JnGn 280 – Fd. Medlem
Postad: 20 sep 2017 00:02

okej så om vi då konstaterar att den kommer att korsa z=-1-3i hur ska man gå vidare efter det?

Smaragdalena 80504 – Avstängd
Postad: 20 sep 2017 08:04

Kan du förklara med egna ord vad argumentet för ett komplext tal betyder? Det verkar som om du inte förstår vad det är du skall räkna ut.

JnGn 280 – Fd. Medlem
Postad: 20 sep 2017 18:25

om absolutbeloppet är avståndet till en punkt från origo så är argumentet vinkeln från origo till punkten.

Smaragdalena 80504 – Avstängd
Postad: 20 sep 2017 18:55 Redigerad: 20 sep 2017 18:58

Vad menar du med"vinkeln till origo"? En vinkel är mellan två räta linjer. Förmodligen menade du att säga "vinkeln mellan en linje från origo till punkten och den positiva x-axeln".

Hur stor kan den vinkeln vara om punkten ligger i den tredje kvadranten?

JnGn 280 – Fd. Medlem
Postad: 20 sep 2017 21:45

om den ligger i tredje kvadranten måste väl vinkeln vara mellan pi och 3pi/2 eller 180 till 270 grader

Smaragdalena 80504 – Avstängd
Postad: 20 sep 2017 21:48

Stämmer. Och eftersom arc tan-funktionen alltid ger en vinkel som ligger i första eller fjärde kvadranten, måste man ibland (som nu) lägga till ett halvt varv för att få fram rätt värde. (Tangens-funktionen har ju en period på ½ varv, till skillnad från sinus och cosinus.)

JnGn 280 – Fd. Medlem
Postad: 20 sep 2017 22:29

okej så om vi först fick argumentet till 71 grader och sedan lägger vi till 180 grader så blir alltså argumentet för -1-3i  251grader?

Smaragdalena 80504 – Avstängd
Postad: 20 sep 2017 22:50

Ja (har inte kontrollräknat ditt argument).

JnGn 280 – Fd. Medlem
Postad: 22 sep 2017 22:45

okej så vi har de två argumenten 251 och 0 för den andra.

Ture 10335 – Livehjälpare
Postad: 23 sep 2017 08:34

Så blir det, men du skulle enligt uppgiften ange argumentet med två decimaler.

Smaragdalena 80504 – Avstängd
Postad: 23 sep 2017 09:48

Och i Ma5 kan man utgå från att argumentet skall anges i radianer (om det inte  står något annat i uppgiften). Dessutom är det lite ovanligt att ange grader med två decimaler.

JnGn 280 – Fd. Medlem
Postad: 23 sep 2017 12:08

okej då får jag det till 7pi/5

men enligt uppgiften ska det ju vara med två decimaler men jag vet inte riktigt hur det ska bli, ska man svara i båda former dvs 7pi/5 samt 71.57+180= 251,57

Smaragdalena 80504 – Avstängd
Postad: 23 sep 2017 12:48

Om du skall ange vinkeln med 2 decimaler blir det 4,40 radianer.

Svara
Close