Arean
Hur ska man räkna på denna då det inte är en vanlig integral?
Det är faktiskt en ganska ”vanlig” integral.
funktionen given, y=x3+2
undre gräns, denna måste först nbestämmas
över gräns given, x=0
så börja hitta nollställen till x3+2=0, x skall ju vara mindre än 0, detta ger undre gränsen.
Hur gör jag det?
x^3 +2 = 0
x^3 = -2
eftersom vi vet att x negativt ksn vi ansätta x=-a
(-a)^3 = (-1*a) ^3 = (-1)^3 * a^3 = -1*a^3 = -2
a^3=2
vad blir då a?
Tredje roten ur 2?
Japp, vad blir då x?
Tredje roten ur av -2?
Du har ju kommit fram till att:
a=tredje roten ur 2
eller hur?
Och vi ansatte:
x=-a
vad blir då x?
Sätter jag då in a så
x= -tredje roten ur 2?
Ja!
nu har vi vår undre integrationsgräns = - tredje roten ur 2
och den övre, från grafen= 0
vi har funktionen vi skall integrera, f=x^3 + 2
nu återstår bara att integrera.
Liten kommentar: tredjeroten ur (–2) = – tredjeroten ur 2