16 svar
325 visningar
Fysikguden1234 388 – Fd. Medlem
Postad: 25 nov 2020 14:43

Areafunktionens definitionsmängd

Hej igen!

 

De sa att punkten P ligger i första kvadranten. Men hur kan man veta hela areafunktionens definitionsmängd utifrån det? 

Varför tar de inte med de negativa värden som ligger i den andra kvadranten i definitionsmängden? Och hur kan roten ur 3 vara med i definitionsmängden när det är uppenbart att bredden av rektangeln inte är roten ur 3. 

Väldigt tacksam om någon kan förklara detta

Mohammad Abdalla 1350
Postad: 25 nov 2020 14:57

P(x,3-x2 )

P ligger på kurvan i första kvadranten, vilket betyder att P kan vara väldigt nära y-axeln (då x är väldigt nära 0 men inte 0) fram till att P kan vara väldigt nära x-axeln (då x är väldigt nära 3, men når inte 3). Detta betyder att 0<x<3.

Fysikguden1234 388 – Fd. Medlem
Postad: 25 nov 2020 15:04
Mohammad Abdalla skrev:

P(x,3-x2 )

P ligger på kurvan i första kvadranten, vilket betyder att P kan vara väldigt nära y-axeln (då x är väldigt nära 0 men inte 0) fram till att P kan vara väldigt nära x-axeln (då x är väldigt nära 3, men når inte 3). Detta betyder att 0<x<3.

Jag förstår fortfarande inte. Varför kan inte x vara mindre än 0 och gå in på andra kvadranten? Vad hände med andra halvan av rektangeln?

Skaft 2373 – F.d. Moderator
Postad: 25 nov 2020 15:13

Punkten P är definierad till att ligga i första kvadranten. Och rektangeln bestäms helt av var P är, eftersom Q bara är en spegling av P, och de två andra hörnen har samma x-koordinater som P och Q.

Så, P går inte in i andra kvadranten, för man har bestämt att den är i första. Men, du kan egentligen låta P gå in i andra kvadranten om du vill. Om Q är spegelpunkten, då hamnar ju den istället i första kvadranten. Och då blir rektangeln bara en dublett där P och Q bytt plats.

larsolof 2684 – Fd. Medlem
Postad: 25 nov 2020 15:15

Punkten   P  kan förflyttas på den röda kurvan uppåt nästan till y-axeln (till punkt R)
Då bildas den röda rektangeln i bilden nedan. Den har basen bara lite mer än 0 och höjden bara lite mindre än 3.

Punkten   P  kan förflyttas på den röda kurvan nedåt nästan till x-axeln (till punkt G)
Då bildas den gröna rektangeln i bilden nedan. Den har basen bara lite mindre än 23 och höjden bara lite mer än 0.

Fysikguden1234 388 – Fd. Medlem
Postad: 25 nov 2020 15:16
Skaft skrev:

Punkten P är definierad till att ligga i första kvadranten. Och rektangeln bestäms helt av var P är, eftersom Q bara är en spegling av P, och de två andra hörnen har samma x-koordinater som P och Q.

Så, P går inte in i andra kvadranten, för man har bestämt att den är i första. Men, du kan egentligen låta P gå in i andra kvadranten om du vill. Om Q är spegelpunkten, då hamnar ju den istället i första kvadranten. Och då blir rektangeln bara en dublett där P och Q bytt plats.

Okej jag tror att jag greppat den delen. Men varför kan inte x vara roten ur 3? Jag förstår att den inte kan vara 0 annars skulle arean bli 0 a.e. 

Mohammad Abdalla 1350
Postad: 25 nov 2020 15:16
Fysikguden1234 skrev:
Mohammad Abdalla skrev:

P(x,3-x2 )

P ligger på kurvan i första kvadranten, vilket betyder att P kan vara väldigt nära y-axeln (då x är väldigt nära 0 men inte 0) fram till att P kan vara väldigt nära x-axeln (då x är väldigt nära 3, men når inte 3). Detta betyder att 0<x<3.

Jag förstår fortfarande inte. Varför kan inte x vara mindre än 0 och gå in på andra kvadranten? Vad hände med andra halvan av rektangeln?

Du kan säga då att P och Q byter plats. Men det du behöver ta hänsyn till här när P(x,3-x2 ) ligger i andra kvadranten är att x är negativ, vilket leder till att basen på triangeln blir -2x istället för 2x. Höjden påverkas inte då för att y-koordinat på P är fortfarande  positiv.

Skaft 2373 – F.d. Moderator
Postad: 25 nov 2020 15:17

Om x är 3\sqrt{3} blir istället rektangelns höjd noll.

Yngve Online 40268 – Livehjälpare
Postad: 25 nov 2020 15:53

... och om rektangelns höjd är 0 så är det inte en rektangel, utan ett endimensionellt streck.

Fysikguden1234 388 – Fd. Medlem
Postad: 25 nov 2020 18:21 Redigerad: 25 nov 2020 18:21
Skaft skrev:

Om x är 3\sqrt{3} blir istället rektangelns höjd noll.

Nu förstår jag inte. Om vi har den givna definitionsmängden så kommer vi endast veta arean av den rödmarkerade ytan alltså 0 < x < sqrt(3). Ska vi helt utesluta den delen av rektangeln som ligger på den negativa sidan (andra kvadranten) 

Skaft 2373 – F.d. Moderator
Postad: 25 nov 2020 18:38

Definitionsmängden 0<x<30 < x < \sqrt{3} motsvarar inte den röda ytan, utan intervallet av giltiga x-koordinater för punkten P. För varje sådan punkt P bildas en rektangel. Den rektangeln sträcker sig in i andra kvadranten, trots att punkt P är kvar i första kvadranten. P är bara rektangelns övre högra hörn, men rektangeln har också ett övre vänstra hörn Q, som är i andra kvadranten.

Rektangelns höjd ges av P:s y-koordinat, som är 3-x23-x^2. Om x fick vara 3\sqrt{3}, då blir ju den här y-koordinaten 3-(3)2=3-3=03 - (\sqrt{3})^2 = 3- 3 = 0.

Fysikguden1234 388 – Fd. Medlem
Postad: 25 nov 2020 18:42
Skaft skrev:

Definitionsmängden 0<x<30 < x < \sqrt{3} motsvarar inte den röda ytan, utan intervallet av giltiga x-koordinater för punkten P. För varje sådan punkt P bildas en rektangel. Den rektangeln sträcker sig in i andra kvadranten, trots att punkt P är kvar i första kvadranten. P är bara rektangelns övre högra hörn, men rektangeln har också ett övre vänstra hörn Q, som är i andra kvadranten.

Rektangelns höjd ges av P:s y-koordinat, som är 3-x23-x^2. Om x fick vara 3\sqrt{3}, då blir ju den här y-koordinaten 3-(3)2=3-3=03 - (\sqrt{3})^2 = 3- 3 = 0.

Så definitionsmängden gäller bara koordinaten P för att det är den punkten eller det värdet vi utgår från när vi beräknar arean? Har jag rätt här? Det är fortfarande lite klurigt men jag förstår men än vad jag gjorde förut 

Fysikguden1234 388 – Fd. Medlem
Postad: 25 nov 2020 18:59 Redigerad: 25 nov 2020 19:05
Skaft skrev:

Definitionsmängden 0<x<30 < x < \sqrt{3} motsvarar inte den röda ytan, utan intervallet av giltiga x-koordinater för punkten P. För varje sådan punkt P bildas en rektangel. Den rektangeln sträcker sig in i andra kvadranten, trots att punkt P är kvar i första kvadranten. P är bara rektangelns övre högra hörn, men rektangeln har också ett övre vänstra hörn Q, som är i andra kvadranten.

Rektangelns höjd ges av P:s y-koordinat, som är 3-x23-x^2. Om x fick vara 3\sqrt{3}, då blir ju den här y-koordinaten 3-(3)2=3-3=03 - (\sqrt{3})^2 = 3- 3 = 0.

Förresten varför kan inte x vara större än roten ur 3 eller mindre 0? Hur är den inte definierad för de värdena? Jag kanske kan lista ut att den kan inte vara större än roten ur 3 för att det är utanför kurvan. Men hur kan den inte vara mellan -sqrt3 och sqrt 3 

Yngve Online 40268 – Livehjälpare
Postad: 25 nov 2020 19:12
Fysikguden1234 skrev:

Förresten varför kan inte x vara större än roten ur 3 eller mindre 0? Hur är den inte definierad för de värdena? Jag kanske kan lista ut att den kan inte vara större än roten ur 3 för att det är utanför kurvan. Men hur kan den inte vara mellan -sqrt3 och sqrt 3 

Pröva själv!

Om x>3x>\sqrt{3}, ligger då P i första kvadranten?

Om x<0x<0, ligger då P i första kvadranten?

Fysikguden1234 388 – Fd. Medlem
Postad: 25 nov 2020 19:19
Yngve skrev:
Fysikguden1234 skrev:

Förresten varför kan inte x vara större än roten ur 3 eller mindre 0? Hur är den inte definierad för de värdena? Jag kanske kan lista ut att den kan inte vara större än roten ur 3 för att det är utanför kurvan. Men hur kan den inte vara mellan -sqrt3 och sqrt 3 

Pröva själv!

Om x>3x>\sqrt{3}, ligger då P i första kvadranten?

Om x<0x<0, ligger då P i första kvadranten?

Jag prövade med -2 och 2 och nej dem ligger inte i första kvadranten. X kommer bli -10 och den kommer ligga i andra kvadranten. Men hur ska man veta vilka värden definitionsmängden är i detta fall? Ska man bara gissa sig fram? 

Yngve Online 40268 – Livehjälpare
Postad: 25 nov 2020 19:27
Fysikguden1234 skrev:

Jag prövade med -2 och 2 och nej dem ligger inte i första kvadranten. X kommer bli -10 och den kommer ligga i andra kvadranten. Men hur ska man veta vilka värden definitionsmängden är i detta fall? Ska man bara gissa sig fram? 

Nej du behlver inte gissa dig fram.

Punkten P ska ligga i första kvadranten.

Området ska bilda en rektangel.

Du har själv konstaterat att det innebär att 0x30\leq x\leq\sqrt{3}.

Vi har konstaterat att både x=0x=0 och x=3x=\sqrt{3} går bort eftersom det då inte blir en rektangel.

Kvar blir bara 0<x<30<x<\sqrt{3}

larsolof 2684 – Fd. Medlem
Postad: 25 nov 2020 20:45

Punkten   P  kan förflyttas på den röda kurvan uppåt nästan till y-axeln (till punkt R)
Då bildas den röda rektangeln i bilden nedan. Den har basen bara lite mer än 0 och höjden bara lite mindre än 3.

Punkten   P  kan förflyttas på den röda kurvan nedåt nästan till x-axeln (till punkt G)
Då bildas den gröna rektangeln i bilden nedan. Den har basen bara lite mindre än 23–√ 23 och höjden bara lite mer än 0.

Svara
Close