10 svar
278 visningar
tomast80 4245
Postad: 22 mar 2020 14:33 Redigerad: 25 apr 2022 11:00

Area med nya variabler

Hej!

Beräkna den efterfrågade arean genom att införa ett nytt koordinatsystem med t-axeln genom linjen y=4-xy=4-x och u-axelnu-axeln vinkelrät mot t-axelnt-axeln.

Därefter, beräkna arean som:

A=0t1u(t)dt=...\displaystyle A=\int_0^{t_1} u(t)dt=...

Moffen 1875
Postad: 13 apr 2020 12:25

Det verkar inte ha hänt så mycket här, har du lust att dela med dig av din lösning?

AlvinB 4014
Postad: 13 apr 2020 13:09

Vad jag kan se går det inte att skapa en sådan funktion u(t)u(t), eftersom för flera tt-värden finns två uu-värden.

(Bilden i ursprungsinlägget har olika skalor på axlarna, vilket gör att det ser ut att vara möjligt, men i själva verket är det inte det.)

tomast80 4245
Postad: 13 apr 2020 13:10

Tack Moffen för att du väckte min tråd till liv! Jag ger lite tips på vägen så kanske någon fyller i resten? ✊️

Sätt:

x=1+tx=1+t

y=3-ty=3-t

Detta ger:

a=x(0)a=x(0)

b=x(t1)=1+t1=4b=x(t_1)=1+t_1=4\Rightarrow

t1=3t_1=3

tomast80 4245
Postad: 13 apr 2020 13:16 Redigerad: 13 apr 2020 13:16
AlvinB skrev:

Vad jag kan se går det inte att skapa en sådan funktion u(t)u(t), eftersom för flera tt-värden finns två uu-värden.

(Bilden i ursprungsinlägget har olika skalor på axlarna, vilket gör att det ser ut att vara möjligt, men i själva verket är det inte det.)

Bra poäng, men det räcker att funktionen för u(t)u(t) är definierad i intervallet 0t30\le t\le 3.

tomast80 4245
Postad: 13 apr 2020 13:18

uu är avståndet mellan funktionerna gg och ff mätt vinkelrätt mot linjen y=4-xy=4-x.

AlvinB 4014
Postad: 13 apr 2020 13:26
tomast80 skrev:
AlvinB skrev:

[...]

Bra poäng, men det räcker att funktionen för u(t)u(t) är definierad i intervallet 0t30\le t\le 3.

Jag hänger inte med. Jag tänker mig att jag roterar och flyttar koordinatsystemet så att linjen y=4-xy=4-x hamnar på den horisontella axeln. Då är ju den sökta arean området ovanför den horisontella axeln, men detta avgränsas till vänster av en kurva som inte är en funktion, eller?

AlvinB 4014
Postad: 13 apr 2020 13:31

Min poäng är helt enkelt att det inte går att för varje punkt längs tt-axeln få ett unikt avstånd mätt vinkelrätt från tt-axeln:

tomast80 4245
Postad: 13 apr 2020 13:40

Bra poäng, AlvinB, man får räkna ut den mindre arean längst till vänster där det finns dubbla u-värden separat. Min uppgiftsformulering var ej fullständig. Tack för påpekandet! 🙏

AlvinB 4014
Postad: 13 apr 2020 13:51
tomast80 skrev:

Bra poäng, AlvinB, man får räkna ut den mindre arean längst till vänster där det finns dubbla u-värden separat. Min uppgiftsformulering var ej fullständig. Tack för påpekandet! 🙏

Jag måste dock säga att jag gillar idén till problemet, så det är synd att skrota det. Kanske vi kan rädda det genom att välja linjen så att den skär parabeln mellan symmetrilinjen och x=4x=4, t.ex. med linjen y=8-2xy=8-2x?

Då uppstår inte samma problem.

tomast80 4245
Postad: 13 apr 2020 14:05

Jättebra idé AlvinB, vi omformulerar uppgiften enligt ditt förslag ovan! 👏🤝

Svara
Close