Är nollvektorn en linjär kombinationen av alla mängder (utam tomma mängden)?
Jag har försökt att kolla upp definitioner för att förstå vad de faktist menar i denna frågan, men jag måste erkänna att jag känner mig mer förvirrad.
0v är en L.K av alla icke tomma mängder!?
Ska jag tolka det som att om jag har en mängd (måste in vara ett vektorrum!?) så kommer hur jag än väljer denna mängd att kunna ge oss nollvektorn. Genom att sätta exemplevis alla skalärar a,b,..n i F (kroppen) till 0.
Därmed borde svaret på frågan vara Ja! Nollvektorn är en linjärkombination av alla mängder förutsagt att mängden ej att den tomma mängden. Har jag uppfattat rätt?
Tusen tack för hjälpen!
Blir summan av (t ex) vilka två vektorer som helst alltid lika med nollvektorn? I så fall är påståendet sant. (Jag överförenklar lite nu, en linjärkombination måste inte var lika mycket av varje vektor.)
Smaragdalena skrev:Blir summan av (t ex) vilka två vektorer som helst alltid lika med nollvektorn? I så fall är påståendet sant. (Jag överförenklar lite nu, en linjärkombination måste inte var lika mycket av varje vektor.)
Summan av två vektorer blir inte alltid lika med nollverktorn.
Därefter blir linjärkombinationen av vilka två vektorer som helst lika med nollvektorn. Svar bör därmed blir "JA", vilket överensstämmer med facit.
Fråga: kan jag addera säg nollvektorn i dimensionen 2 med nollvektorn i dimensionen 3?:
(0,0) + (0,0,0) = ??
Finns något som kallas direct sum, vilket fungerar för olika dimensioner. Men den vanliga additionen är inte definierad för olika dimensioner.
Calle_K skrev:Finns något som kallas direct sum, vilket fungerar för olika dimensioner. Men den vanliga additionen är inte definierad för olika dimensioner.
Stort tack för all hjälp! :D
Jag tror vi förstår andemeningen, men bara för att vara petig, är inte formuleringen konstig? Jag får starka irks. Dessa fyra formuleringar kan jag läsa och förstå:
The zero vector is in the span of any non empty set of vectors
Vilket är sant
The zero vector is the linear combination of any non empty set of vectors
(Som Smaragdalena uttryckte på svenska) Är väldigt osant
The zero vector is in the linear combination of any non empty set of vectors
Är sant och samma påstående som den första.
The zero vector is the/a trivial linear combination of any non empty set of vectors
Låter också okej, men det som står i din uppgift.........
En lineärkombination brukar definieras som Ändlig. Man kan således inte ha en Godtycklig mängd av vektorer. En sådan kan mycket väl vara överuppräknelig. Svaret på den ursprungliga frågan blir då: Falskt.
För belysa kravet på ändlighet kan vi ta det lineära rummet av alla polynom. Vi har att ex kan skrivas som en oändlig lineärkomb av vektorerna 1, x, x2 …. (Taylor). Men ex är inget polynom, så vi hamnar utanför rummet av polynom.