2 svar
65 visningar
Dualitetsförhållandet 1287
Postad: 30 mar 2021 16:13

Är en kropp som släpps maximala hastighet proportionell mot massan av kroppen?

Jag tänker att Fner= mg och Fupp=k × v, där k är en konstant meddimension kgs-1. Fresulterande=Fner-Fupp=mg-kv. Vi får därmed aresulterande=Fresuleterandem=mg - kvm=g-kvm. Vi får sluthastighetenv0 genom denna integral: 0t0(g-kvm)dt. Vi har att v beror av t, men g är en konstant. Därmed inses lätt att hastighetenär proportionell mot m.

Har jag tänkt rätt? Finns det något lättare sätt att inse det?

JohanF 5412 – Moderator
Postad: 30 mar 2021 16:50 Redigerad: 30 mar 2021 16:52

Att "det inses lätt" kan man antingen skriva när man lätt inser en sak (men då kan man lika gärna lägga ut orden lite extra så att inga tveksamheter finns), eller så skriver man så när man vet vad svaret är och vill låtsas komma fram till svaret.

Ge inte din lärare chans att tolka vad han/hon tror om dej.

 

Den enklaste motiveringen är kanske att teckna accelerationen som du gör, a=g-kvm. Och sedan säga att gränshastigheten v0 är den hastighet som hastigheten ökar till, tills accelerationen har minskat till noll.

Dvs 0=g-kv0m    v0=mgk   Då "inser man lätt" att gränshastigheten är proportionell mot m.

 

(Men det är ungefär samma sak som du skrivit, för din integral som beskriver momentanhastigheten kommer att sluta växa när t går mot oändligheten om integranden a går mot noll)

Pieter Kuiper 8033 – Avstängd
Postad: 30 mar 2021 16:57 Redigerad: 30 mar 2021 17:02

I ord: vid terminalhastigheten är hastigheten konstant. Luftmotståndet är då lika stor som tyngdkraften.


Sedan beror det på hur sambandet mellan luftmotstånd och hastighet ser ut. Det är ett något som beror på Reynolds tal. Men man skulle anta att det var proportionellt mot hastighet, så då är det lätt att inse.

Svara
Close