5 svar
151 visningar
MovableAdam behöver inte mer hjälp
MovableAdam 26
Postad: 5 maj 2019 14:35 Redigerad: 5 maj 2019 15:08

Är dy/dx = 0 en differentialekvation?

Hej! Fick en uppgift på tillämpningar av differentialekvationer som lyder likt följande:

En affär har de senaste åren haft en konstant försäljningstakt. Detta åtgärdar man med en marknadsföringskampanj vilket ökar försäljningstakten. Efter en lyckad kampanj är förändringshastigheten av försäljningstakten proportionell mot kvadratroten av den aktuella försäljningstakten.

Låt försäljningstakten = y(t), där t = tiden i år.

a ) Utforma en differentialekvation för förändringshastigheten i försäljningstakten innan kampanjen

Min lösning:

dy/dt =0

Försäljningstakten är ju konstant, då blir det ju ingen förändringshastighet? Men är detta en differentialekvation?

b ) Utforma en differentialekvation för försäljningstaktens förändringshastighet efter kampanjen

Min lösning:

dy/dt = ky

 

Min fråga är alltså om jag löst a-uppgiften korrekt?

Qetsiyah 6567 – Livehjälpare
Postad: 5 maj 2019 15:01

Ja det är en diff ekvation (som är enkel och ganska tråkig)

Smaragdalena 80504 – Avstängd
Postad: 5 maj 2019 15:05

Ja, a-uppgiften är korrekt löst. Ja, det är en differentialekvation, men en ovanligt simpel sådan.

MovableAdam 26
Postad: 5 maj 2019 15:12

Tack för hjälpen!

Qetsiyah 6567 – Livehjälpare
Postad: 5 maj 2019 15:16

Det råkar inte vara så att y'=0 är den enklaste möjliga diffekvationen också? Hmm jag tycker det i alla fall

MovableAdam 26
Postad: 5 maj 2019 16:07

Mycket möjligt! 

Svara
Close