2 svar
60 visningar
nilson99 258 – Avstängd
Postad: 27 mar 2019 16:56

Ange alla lösningar till ekvationen?

Svar b)

jag förstår att olikheten gäller för -inf < x < -1, men jag löste ekvationen såhär:

(1^x/(3^x)) > 2

1/(3^x) > 2

3^(-x) > 2

-xln3 > ln 2

x < -((ln2)/(ln3))

detta x ligger mellan 0 och -1, och när jag testar på miniräknaren ser jag att flera värden som ligger i intervallet -1 < x < 0 också stämmer in i olikheten (till exempel -0,8 eller -0,7). Därför tänker jag att svaret är d)? De säger ju i frågan ”för alla x” och alternativ b) anger inte alla lösningar x?

Smutstvätt 25071 – Moderator
Postad: 27 mar 2019 17:01

Här gäller det att läsa ordentligt och hålla tungan rätt i mun. Titta på vad som händer då x = -1. Då är VL = 3, alltså är olikheter uppfylld. Men de frågar inte efter vilket alternativ som anger alla möjliga x, utan vilket alternativ där alla ingående värden på x uppfyller likheten. Om det sedan finns ett oändligt antal andra tal som uppfyller likheten är inte relevant. 

Laguna Online 30472
Postad: 27 mar 2019 17:34

Jag tror jag skulle svara b, men det är ju också så att det finns andra svar. Jag gillar inte riktigt frågan. Om man får frågan utan valmöjligheter och räknar ut svaret så blir det inte b. 

Svara
Close