12 svar
190 visningar
Mawkey 17 – Fd. Medlem
Postad: 7 mar 2018 19:43

Andraderivatan - konvex/konkav & inflexionspunkter

f(x)=2xex, -4x1

Bestäm de intervall där funktionen f är konvex/konkav samt ange eventuella inflexionspunkter.

 

Jag har tagit fram derivatan först:

f'(x)=2ex+2xex = 2ex(1+x)

Nu som jag har förstått behöver jag få fram andraderivatan vilket betyder att man ska derivera förstaderivatan. Jag har fastnat här och vet inte hur jag ska ta mig vidare.

Smaragdalena 80504 – Avstängd
Postad: 7 mar 2018 20:43

Vad är derivatan av funktionen g(x)=2ex+2xex g(x) = 2e^x+2xe^x ?

Mawkey 17 – Fd. Medlem
Postad: 7 mar 2018 21:51

 Det är de jag inte vet hur man gör.

rohanzyli 177 – Fd. Medlem
Postad: 7 mar 2018 22:07

Du ska derivera första derivatan för att få andra derivatan, på precis samma tänk som du hade för att få fram första derivatan. Eftersom du visste hur man derivera första derivatan bör den andra vara en enkel uppgift.

Mawkey 17 – Fd. Medlem
Postad: 7 mar 2018 22:24
rohanzyli skrev :

Du ska derivera första derivatan för att få andra derivatan, på precis samma tänk som du hade för att få fram första derivatan. Eftersom du visste hur man derivera första derivatan bör den andra vara en enkel uppgift.

På den första så använde jag en regel: h'g + hg' där h = 2x, g = e^x och h' = 2, g' = e^x.

2e^x + 2xe^x = 2e^x(1+x)

Men jag förstår inte hur jag kan använda samma princip här.

jonis10 1919
Postad: 7 mar 2018 22:30

Hej

Om du har funktionen: h(x)=2ex+2xex så är det bara derivera term för term. Du har redan tagit fram vad derivatan för termen 2xex är, vilket du såg var 2ex+2xex

Vad blir då f''(x)=?

Bubo 7343
Postad: 7 mar 2018 22:34

Nu tror jag att du har fått tillfälligt hjärnsläpp. Så här enkelt är det;

h = 2e^x

g = 1+x

Mawkey 17 – Fd. Medlem
Postad: 7 mar 2018 22:52

 Jag är nog väldigt seg tänkt men jag får inte rätt svar hur jag än gör.

Bubo 7343
Postad: 7 mar 2018 23:28

Vad är h' ?

Vad är g'  ?

Mawkey 17 – Fd. Medlem
Postad: 7 mar 2018 23:57

 Jag fick att h' = e^x och g' = 1

Tanken jag hade på h' var att e^x ändras inte och 2:an försvinner, kvar blir e^x. Tanken med g' var att x blir 1 och 1:an försvinner, kvar blir 1. Har säkert tänkt helt åt skogen.

Smaragdalena 80504 – Avstängd
Postad: 8 mar 2018 06:48 Redigerad: 8 mar 2018 07:13

Omstart. Du har lyckats derivera funktionen f(x)=2xex f(x) = 2xe^x och fått fram derivatan f'(x)=2ex+2xex f'(x) = 2e^x + 2xe^x . Detta är en summa av två termer. Den ena termen är precis likadan som den ursprungliga funktionen, så det är svårt att förstå varför du inte kan derivera den. Den andra termen är ännu enklare att derivera. Derivatan är summan av dessa termers derivator. Det är lättare än jag tror att du tror.

Mawkey 17 – Fd. Medlem
Postad: 8 mar 2018 15:02 Redigerad: 8 mar 2018 15:04

f'(x)=2ex+2xexf''(x)=2ex+(2ex+2xex)flyttar ex...2+(2+2x)exlägger in 2:an...(4+2x)exförenklar...2(2+x)exf'' =0, x= -2

Är detta rätt tankesätt? Undrar också varför man lägger e^x på höger-sidan av parentesen?

Smaragdalena 80504 – Avstängd
Postad: 8 mar 2018 17:56

Första två raderna är rätt. Sedan har du tappat bort faktorn ex e^x i den första termen, men den har dykt upp igen längre ner. Troligtvis har du placerat parentesen fel. Man har faktoriserat derivatan i tre faktorer för att kunna använda nollproduktmetoden - det är bara parentesen som kan bli 0, alltså har derivatan bara ett nollställe.

Svara
Close