4 svar
97 visningar
naturarecheck 1039
Postad: 24 okt 2022 18:25

Andraderivata

Är andraderivatan negativ i graf 1? Jag har förstått det som att negativ andraderivata ger oss en maximipunkt på den vanliga funktionen. Men hur går det till? Jag får det till att derivatan får en maximipunkt.

Henning 2063
Postad: 24 okt 2022 20:06

Du har en otydlig fråga
Vilka förutsättningar gäller och vad vill du veta ?

Janne491 277
Postad: 24 okt 2022 20:14

För x = 0 är andraderivatan 0 (och tredjederivatan för f negativ). Detta innebär att derivatan har ett maximum (och att f (som då är en tredjegradsfunktion) har en sadelpunkt (eller inflexionspunkt))

Marilyn 3382
Postad: 27 okt 2022 01:12

Andraderivatan i din figur är positiv för x < 0 och negativ för x > 0. 

När du använder andraderivatatestet så ska f’ vara 0 i punkten, annars ger testet inget. Dessutom får inte f’’ vara noll där. Testet funkar så här:

Vi har f(x) som du deriverat och konstaterat att f’(a) = 0. Antag att f’’(a) < 0. Om inte andraderivatan gör några konstiga hopp så kommer den också vara negativ i någon liten omgivning till a.

Då kan vi göra teckenschema:

x:               a
f’’         –   –  –

f’      avt   0   avt

Om f’ avtar till 0 och sedan fortsätter att avta så måste f’ vara positiv till vänster och negativ till höger om a, dvs

f’    +      0     –

f   väx           avt

Dvs f har max för x = a.

 

Det är viktigt att komma ihåg villkoren. Om f’(a) = 0 och f’’(a) < 0 så f(a) maximum.

Om f’(a) = 0 och f’’(a) > 0 så f(a) minimum.

I ditt exempel var f’’(a) = 0 och då är andraderivatatestet värdelöst.

 

En god regel tycker jag är att för det mesta strunta i andraderivatatestet och i stället göra teckenstudium av f’. Men inte alltid.

naturarecheck 1039
Postad: 27 okt 2022 21:04

Tack Mogens för ditt detaljerade svar. Tack till er andra också!

Svara
Close