1 svar
288 visningar
Lion 293
Postad: 30 jan 2021 11:40

Andra derivatan och derivatan

Vinsten V kronor vid ett företag kan beskrivas med funktionen V(x) = x³ - 8x² + 20x där x är antalet tillverkade produkter i tusental.

a) Vid vilket antal tillverkade produkter börjar vinsten minska för första gången?

b) Vid vilket antal vänder vinster återigen uppåt?

 

Mitt försök

Mha derivatan och andra derivatan så tog jag reda på hur funktioner ser ut och extrempunkterna. Vilket blev x=2 (minimipunkt) och x=3,3333... (maximipunkt).

Jag har fattat att vid x=2 minskar vinsten och vid x=3,333 så ökar vinsten.

Facit

a) 2000

b) 3300

Jag undrar varför det blir så? Är det för att det står "produkter i tusental"? Men borde inte b) vara 3333 i såna fall då?

Henning 2063
Postad: 30 jan 2021 12:02

Jo, det beror som du säger på att man räknar antalet i tusental (kst=kilo st) men vill ha svaret i st

Troligen har man avrundat till 2 värdesiffror så att 3 3333 300

Svara
Close