2 svar
58 visningar
Korra behöver inte mer hjälp
Korra 3798
Postad: 10 jun 2019 12:22 Redigerad: 10 jun 2019 12:39

Absolutbelopp

x+3=2x-2+1 Hur ska jag lösa dessa ekvationer mer effektivt? 

Jag gör på följande sätt: vi har x+3=x+3,x0-(x+3),x<0och 2x-2+1=2(x-2)+1, x0-2(x-2)+1, x<0
y1=x+3y2=-x-3g1=2x-3g2=5-2x   Är tanken nu att jag ska testa följande kombinationer av ekvationer: y1=g1y1=g2y2=g1y2=g2


Det tar tid och det skulle vara lättare om jag visste vilken av ekvationerna som jag ska ställa upp. Jag får ju någon lösning av alla ekvationer men det är inte en korrekt lösnig. 

Tack.


Tråd flyttad från Universitet till Matte 2. /Smutstvätt, moderator

Metoden för att lösa absolutbeloppsekvationer är ungefär som du gjort, dela upp intervallet i tre bitar; när x ≥ 2, när -3 ≤ x < 2, och när x < -3. Därefter löser du vardera ekvation som vanligt. Därefter måste du utesluta eventuella lösningar som ligger utanför intervallet. 

Korra 3798
Postad: 10 jun 2019 12:40
Smutstvätt skrev:

Metoden för att lösa absolutbeloppsekvationer är ungefär som du gjort, dela upp intervallet i tre bitar; när x ≥ 2, när -3 ≤ x < 2, och när x < -3. Därefter löser du vardera ekvation som vanligt. Därefter måste du utesluta eventuella lösningar som ligger utanför intervallet. 

Jahopp, okej tack.

Svara
Close