6 svar
55 visningar
ChristopherH 753
Postad: 21 jan 2023 19:40

4x^2 + 4x + 4 = p(X) kan man få fram nollställen

Jag faktoriserar genom att bryta ut 4

4(x^2+x+1) = 0

Vi ser nu att man kan använda nollproduktsmetod på x^2+x+1 = 0

med pq formel så får man svaret +-sqrt -0.75

Den saknar alltså reala rötter.

 

Finns det någon annan metod att få nollpunkterna? Eller iallafall skriva grafen på om den inte har nollpunkter?

Yngve 40279 – Livehjälpare
Postad: 21 jan 2023 19:48 Redigerad: 21 jan 2023 19:48
ChristopherH skrev:

Jag faktoriserar genom att bryta ut 4

4(x^2+x+1) = 0

Ja, det stämmer.

Vi ser nu att man kan använda nollproduktsmetod på x^2+x+1 = 0

med pq formel så får man svaret +-sqrt -0.75

Nej det stämmer inte. Du saknar termen -1/2 i svaret.

Den saknar alltså reala rötter.

Ja det stämmer.

Finns det någon annan metod att få nollpunkterna?

Ja, du kan kvadratkomplettera uttrycket.

Eller iallafall skriva grafen på om den inte har nollpunkter?

Jag förstår inte riktigt vad du menar med din fråga.

ChristopherH 753
Postad: 21 jan 2023 19:50 Redigerad: 21 jan 2023 19:52

Vi ser nu att man kan använda nollproduktsmetod på x^2+x+1 = 0

med pq formel så får man svaret +-sqrt -0.75

Nej det stämmer inte. Du saknar termen -1/2 i svaret.

Vad menar du? (Ja jag glömde skriva -0.5 +- sqrt-0.75)

Finns det någon annan metod att få nollpunkterna?

Ja, du kan kvadratkomplettera uttrycket.

Ska försöka göra det och sen posta igen eller skriva här, tack.

Jag förstår inte riktigt vad du menar med din fråga.

Helt enkelt hur man skall skriva ner funktionen till en graf på ett styck paper

Yngve 40279 – Livehjälpare
Postad: 21 jan 2023 19:59 Redigerad: 21 jan 2023 20:00
ChristopherH skrev:

Vad menar du? (Ja jag glömde skriva -0.5 +- sqrt-0.75)

Ja, det var det jag menade.

Helt enkelt hur man skall skriva ner funktionen till en graf på ett styck paper

Du kan markera minimipunkten (ligger på symmetrilinjen, dvs på x = -1/2) och några andra lättberäknade punkter, t.ex. p(1), p(2) och p(3).

Grafen ser sedan likadan ut till vänster om symmetrilinjen.

ChristopherH 753
Postad: 21 jan 2023 20:03 Redigerad: 21 jan 2023 20:04
Helt enkelt hur man skall skriva ner funktionen till en graf på ett styck paper

Du kan markera minimipunkten (ligger på symmetrilinjen, dvs på x = -1/2) och några andra lättberäknade punkter, t.ex. p(1), p(2) och p(3).

Grafen ser sedan likadan ut till vänster om symmetrilinjen.

Ja ok, då förstår jag. Men vad om det var t.ex en tredjegradsfunktion eller fjärdegrads. Då finns det ju många ’’kursavsnitt’’ alltså många arga och glada mun. Där det finns flera symmetrilinjer mellan dessa olika arga och glada mun. Hur ska man då tänka jämfört med andragradsekvation att till höger och vänster om symmetrilinjen så är den samma?

Yngve 40279 – Livehjälpare
Postad: 21 jan 2023 21:07 Redigerad: 21 jan 2023 21:08

Om du har lärt dig att derivera så kan du ganska enkelt skissa en graf med hjälp av derivata.

Annars kan du använda en värdetabell för att skissa grafen. Men du bör då först försöka ta reda på nollställen och stationära punkter (dvs lokala minimi-, maximi- och terrasspunkter).

Laguna Online 30481
Postad: 21 jan 2023 22:43
ChristopherH skrev:
Helt enkelt hur man skall skriva ner funktionen till en graf på ett styck paper

Du kan markera minimipunkten (ligger på symmetrilinjen, dvs på x = -1/2) och några andra lättberäknade punkter, t.ex. p(1), p(2) och p(3).

Grafen ser sedan likadan ut till vänster om symmetrilinjen.

Ja ok, då förstår jag. Men vad om det var t.ex en tredjegradsfunktion eller fjärdegrads. Då finns det ju många ’’kursavsnitt’’ alltså många arga och glada mun. Där det finns flera symmetrilinjer mellan dessa olika arga och glada mun. Hur ska man då tänka jämfört med andragradsekvation att till höger och vänster om symmetrilinjen så är den samma?

Kurvavsnitten för ett högre polynom än andragradspolynom är inte symmetriska (utom några som bara har en extrempunkt, t.ex. x4).

Svara
Close