4230 moivres formel
Hej!
Hur hittar man arg z, får det till 480 grader men vet inte hur jag ska omvandla det till något som ger ett relevant sin och cos värde ( 480 grader får jag efter att ha multiplicerat med 8 enligt moivres formel)
Läs här:
https://www.matteboken.se/lektioner/matte-4/komplexa-tal/de-moivres-formel
Fråga sedan om det du inte förstår.
jag förstår själva moivres formel, men tycker det blir lite krångligt närdet blir 480 grader som ( cos 480 + i sin 480) vet inte riktigt hur jag ska beräkna det och blir även svårt om jag har det i pi ( cos 8* 2 pi/3 + i sin 2pi /3) då det inte finns med i formelsamlingen
Cosinus- och sinusfunktionerna är periodiska med perioden 360° (eller 2pi radianer)
Det betyder att cos(480°) = cos(480° - 360°) = cos(120°).
(Eller att cos(8*2pi/3) = cos(16pi/3 - 4pi) = cos(4pi/3))
Samma sak gäller för sinusfunktionen.
Men vinkeln bör bli -480°, inte 480°.
(Eller -8pi/3, inte 2pi/3)
oj räknade tydligen lite fel. får nu att det ska vara cos 960 + i sin 960.
Blir det så här då
960- 2* 360=240
240-360= -120
tar man sedan 180+ (-120) ?
Hur kommer du fram till 960°?
argumentet blir ju
-roten ur 3 /1 = -roten ur 3
och kollar man i de exakta värdena för tangens så motsvarar -roten ur 3, 120 grader. 120grader * 8 blir 960 grader och det kommer att stå framför både cosinus och sinus
Du måste ta hänsyn till vilken kvadrant det komplexa talet ligger i.
De två komplexa talen och har olika argument men och har samma värde.
Du bör alltså börja med att markera talet i det komplexa talplanet för att se vilken kvadrant talet ligger i och därmed vad argumentet egentligen är.
Du kan läsa mer om det här.
Talet befinner sig i kvadrant 4, hur gör jag sedan?
Rita en rätvinklig triangel där hypotenusan är sträckan melman origo och det komplexa talet, den korta kateten är sträckan mellan origo och talet och den långa kateten är sträckan mellan och .
Du ser då att vinkeln är -60° (eller -pu/3).
Yngve skrev:Rita en rätvinklig triangel där hypotenusan är sträckan melman origo och det komplexa talet, den korta kateten är sträckan mellan origo och talet och den långa kateten är sträckan mellan och .
Du ser då att vinkeln är -60° (eller -pu/3).
Jag förstår inte riktigt, hur ska man rita upp det?