2x²-6x-20=0
När jag sätter in pq-formeln så trodde jag benhårt att jag alltid räknar med negativt tal. Alltså alltid använder mig av
x= - p/2 ±√ (p/2)² - q
Alltså i detta fall:
1) x = -3/2 ±√ (-3/2)² - (-10)
2) x = -3/2 ±√ 9/4 + 40/4
3) x = -3/2 ±√ 49/4
4) x = -3/2 ± 7/2
jag får då ut
x1 = 2
x2 = -5
medan det borde vara
x1 = -2
x2 = 5
Hur vet jag när p blir positiv och när blir den negativ?
Jag såg dessutom att jag glömde ta med minus i steg två där det borde blivit -9/4. Men då blir det ännu mera fel om jag räknar vidare på detta...
Var tänker jag fel??
Hej!
Om så är .
Moffen skrev:Hej!
Om så är .
Då var min första uträkning rätt att skriva 9/4 ?!
Men ändå får slutresultaten fel värde.. Jag förstår inte var jag tänker fel?
TySvEnMa skrev:Moffen skrev:Hej!
Om så är .
Då var min första uträkning rätt att skriva 9/4 ?!
Men ändå får slutresultaten fel värde.. Jag förstår inte var jag tänker fel?
Vad menar du?
Du har alltså andragradsekvationen , det verkar du också kommit fram till.
Vi läser av och .
Vi använder pq-formeln , och med våra värden får vi alltså:
.
Är du med så långt?
Moffen skrev:TySvEnMa skrev:Moffen skrev:Hej!
Om så är .
Då var min första uträkning rätt att skriva 9/4 ?!
Men ändå får slutresultaten fel värde.. Jag förstår inte var jag tänker fel?
Vad menar du?
Du har alltså andragradsekvationen , det verkar du också kommit fram till.
Vi läser av och .
Vi använder pq-formeln , och med våra värden får vi alltså:
.
Är du med så långt?
Absolut.
Absolut.
Dåså, då är saken klar?
Ditt fel i ursprungsinlägget är att du har skrivit som din första term men nu ser du kanske att det ska vara .
Kan du slutföra beräkningen?
Moffen skrev:Absolut.
Dåså, då är saken klar?
Ditt fel i ursprungsinlägget är att du har skrivit som din första term men nu ser du kanske att det ska vara .
Kan du slutföra beräkningen?
Det är ju här jag inte förstår vad som blir fel:
x = -3/2 ±√ 9/4 + 10
x = -3/2 ±√ 9/4 + 40/4
x = -3/2 ±√ 49/4
x = -3/2 ± 7/2
TySvEnMa skrev:Moffen skrev:Absolut.
Dåså, då är saken klar?
Ditt fel i ursprungsinlägget är att du har skrivit som din första term men nu ser du kanske att det ska vara .
Kan du slutföra beräkningen?
Det är ju här jag inte förstår vad som blir fel:
x = -3/2 ±√ 9/4 + 10
x = -3/2 ±√ 9/4 + 40/4
x = -3/2 ±√ 49/4
x = -3/2 ± 7/2
Men nu var det ju inte det som vi hade skrivit upp eller hur?
Du skriver fortfarande , men vi skrev ju .
Vi vet även att minus gånger minus är plus, eller hur?
Moffen skrev:TySvEnMa skrev:Moffen skrev:Absolut.
Dåså, då är saken klar?
Ditt fel i ursprungsinlägget är att du har skrivit som din första term men nu ser du kanske att det ska vara .
Kan du slutföra beräkningen?
Det är ju här jag inte förstår vad som blir fel:
x = -3/2 ±√ 9/4 + 10
x = -3/2 ±√ 9/4 + 40/4
x = -3/2 ±√ 49/4
x = -3/2 ± 7/2
Men nu var det ju inte det som vi hade skrivit upp eller hur?
Du skriver fortfarande , men vi skrev ju .
Vi vet även att minus gånger minus är plus, eller hur?
NU ser jag ju!
Jag var BAKOM likhetstecknet medan du förklarade FRAMFÖR. Nu förstår jag att -3x blir -3/2 ± ....... ja, nu förstår jag :) och när jag räknat på papper blir x1 = -2 och x2 = 5.
En sista fråga är, hur vet jag vilken som är x1 och x2? är x1 plus eller minus?
x1 = 3/2 + 7/2 ?
och x2 = 3/2 - 7/2? eller tvärt om?
NU ser jag ju!
Jag var BAKOM likhetstecknet medan du förklarade FRAMFÖR. Nu förstår jag att -3x blir -3/2 ± ....... ja, nu förstår jag :) och när jag räknat på papper blir x1 = -2 och x2 = 5.
En sista fråga är, hur vet jag vilken som är x1 och x2? är x1 plus eller minus?
x1 = 3/2 + 7/2 ?
och x2 = 3/2 - 7/2? eller tvärt om?
Det spelar ingen roll, du kan välja vilket som.
Får jag föreslå att man löser enkla andragradsekvationen så här:
x^2 - 3x - 10; <=> x^2 - 3x - (2*5) = 0; <=> ( x + 2)(x - 5) = 0; med svaret x1 = -2 och x2 = 5.