0,5,12,21 ...... Skriv formeln för mönstret
Jag ser att själva ökningen ökar med 2 hela tiden. Jag kommer inte vidare. Hur ska man tänka?
Om du adderar 4 till talen 0, 5, 12 och 21 så der du att det är något särskilt med de tal du får fram. Vad?
Okej så här skriver jag :
0+4=4 -> 2^2
5+4=9 -> 3^2
12+4=16->4^2
det är kvadratiska tal
Men om man lägger till 4 så ändrar man ju talföljden?
Vad är nästa steg?
Så, talen du vill ha är:
Men är det bara att testa sig fram i sånna typer av frågor?
(EDIT)
Jag förstår inte hur ni kom var till svaret. Vi adderade med 4 och fick ett kvadrattal därefter subtraherade vi med 4?
Talen är 22-4, 32-4, 42-4, 52-4. Vilket skulle nästa tal vara?
Om differenserna i en talföljd är konstanta så beskrivs följden av ett förstagradsuttryck. Om Om differenserna i en talföljd inte är konstanta men differensernas differenser är konstanta, så beskrivs följden av ett andragradsuttryck. Det enklaste andragradsuttrycket är x2, och då blir differensernas differenser 2. Det blir de här också, så andragradstermen i uttrycket som vi söker är x2. Då kan vi dra bort x2 från våra tal och se vilket förstagradsuttryck som beskriver det som blir kvar.
Ungefär så gör jag. Hur man ska formulera detta så det passar Matte 1 vet jag däremot inte.
Nästa tal är (6^2)-4
Testade ni bara fram er? Hur kan man skriva en rekursiv formel?
Laguna skrev:Om differenserna i en talföljd är konstanta så beskrivs följden av ett förstagradsuttryck. Om Om differenserna i en talföljd inte är konstanta men differensernas differenser är konstanta, så beskrivs följden av ett andragradsuttryck. Det enklaste andragradsuttrycket är x2, och då blir differensernas differenser 2. Det blir de här också, så andragradstermen i uttrycket som vi söker är x2. Då kan vi dra bort x2 från våra tal och se vilket förstagradsuttryck som beskriver det som blir kvar.
Ungefär så gör jag. Hur man ska formulera detta så det passar Matte 1 vet jag däremot inte
Jag har skrivit en slutenformel an=((n+1)^2 )-4
Hur kan jag skriva om den slutna formeln till en rekursiv formel istället?
—————-
en annan fråga angående sånna typer av frågor.
om differensen av differensen istället var 4 . Betyder det att 4^4 är det talet man Ska subtrahera elementen med för att få sitt tal? Alltså ex.
talföljd 4,12,24
här är differensens differensen 4
Kan någon hjälp snälla? Hur kan man skriva en rekursiv formel? När man ser att differensernas differens är 2 eller 4?
Renny19900, det står i Pluggakutens regler att du skall göra en ny tråd när du har en ny fråga. Jag stryker över din nya fråga i den hör tråden, för att minska risken att det blir rörigt i tråden. /moderator
Renny19900 skrev:Kan någon hjälp snälla? Hur kan man skriva en rekursiv formel? När man ser att differensernas differens är 2 eller 4?
Renny199900, det står i Pluggakutens regler att man skall vänta åtminstone 24 timmar innan man bumpar sin tråd. /moderator
En rekursiv formel ska blanda in bara an och an-1 (eller några till bakåt, men inte alla), så att man kan räkna ut värdena steg för steg. Här har vi redan tagit reda på differenserna, dvs. an-an-1, och de ökar ju linjärt, så det är bara att hitta ett förstagradsuttryck i n för differenserna så är det klart.
Man kan förstås också utgå från den slutna formeln som vi redan har. Om an = (n+1)2 - 4, så gör vi ett uttryck för an-1, och räknar sedan ut an-an-1.